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A B S T R A C T

Reliable estimation of the surface energy balance from local to regional scales is crucial for many

applications including weather forecasting, hydrologic modeling, irrigation scheduling, water resource

management, and climate change research. Numerous models have been developed using remote

sensing, which permits spatially distributed mapping of the surface energy balance over large areas. This

study compares flux maps over a relatively simple agricultural landscape in central Iowa, comprised of

soybean and corn fields, generated with three different remote sensing-based surface energy balance

models: the Two-Source Energy Balance (TSEB) model, Mapping EvapoTranspiration at high Resolution

using Internalized Calibration (METRIC), and the Trapezoid Interpolation Model (TIM). The three models

have different levels of complexity and input requirements, but all have operational capabilities. METRIC

and TIM make use of the remotely sensed surface temperature–vegetation cover relation to define key

model variables linked to wet and dry hydrologic extremes, while TSEB uses these remotely sensed

inputs to define component soil and canopy temperatures, aerodynamic resistances, and fluxes. The

models were run using Landsat imagery collected during the Soil Moisture Atmosphere Coupling

Experiment (SMACEX) in 2002 and model results were compared with observations from a network of

flux towers deployed within the study area. While TSEB and METRIC yielded similar and reasonable

agreement with measured heat fluxes, with root-mean-square errors (RMSE) of�50–75 W/m2, errors for

TIM exceeded 100 W/m2. Despite the good agreement between TSEB and METRIC at discrete locations

sampled by the flux towers, a spatial intercomparison of gridded model output (i.e., comparing output on

a pixel-by-pixel basis) revealed significant discrepancies in modeled turbulent heat flux patterns that

were largely correlated with vegetation density. Generally, the largest discrepancies, primarily a bias in

H, between these two models occurred in areas with partial vegetation cover and a leaf area index

(LAI) < 2.0. Adjustment of the minimum LE assumed for the hot/dry hydrologic extreme condition in

METRIC reduced the bias in H between METRIC and TSEB, but caused a significant increase in bias in LE

between the models. Spatial intercomparison of modeled flux patterns over a variety of landscapes will

be required to better assess uncertainties in remote sensing surface energy balance models, and to work

toward an improved hybrid modeling system.

Published by Elsevier B.V.
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1. Introduction

Accurate characterization of surface energy fluxes and evapo-
transpiration (ET) over a range of spatial and temporal scales is
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critical for many geophysical applications. Ground-based or tower
observations can provide representative values of ET for different
land cover types, but such point data cannot be easily extrapolated
to produce accurate maps over a landscape or region, due to
natural variability in physical properties such as soil moisture and
vegetation type. To address this need, there has been a major effort
over the past several years to develop and refine remote sensing-
based energy balance models that provide spatially distributed ET
maps operationally using satellite data (Glenn et al., 2007; Gowda
et al., 2008; Kalma et al., 2008). A few of these have been promoted
as having operational capabilities.
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http://www.sciencedirect.com/science/journal/01681923
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One is the Trapezoid Interpolation Model (TIM), which uses
land surface radiometric temperature (TR)–vegetation index space
to adjust the Priestley–Taylor based potential ET algorithm for
mapping actual ET (Jiang and Islam, 2001; Batra et al., 2006; Wang
et al., 2006). TIM was identified as a promising technique having
little complexity and few data input requirements, yet producing
reasonable ET estimates over the U.S. Southern Great Plains (Jiang
and Islam, 2001; Batra et al., 2006; Wang et al., 2006) and the
Senegal River basin in Africa (Stisen et al., 2008).

The Mapping EvapoTranspiration with Internalized Calibration
(METRIC; Allen et al., 2007a,b) uses the principle of surface energy
balance to scale sensible and latent heating between hydrologic
and thermal extremes (wet/cold and dry/hot) identified within the
modeling domain. Following the Surface Energy Balance Algorithm
for Land (SEBAL; Bastiaanssen et al., 1998, 2005), METRIC assumes
that the near-surface vertical air temperature gradient and the
associated sensible heat flux relationship scale linearly with
radiometric surface temperature, and latent heat is determined as
a residual to the surface energy budget. The METRIC approach has
been applied extensively in irrigated agricultural regions in
southern Idaho, New Mexico, Colorado, Nebraska, and southern
California and has been recognized as an operational approach
providing spatially distributed ET over a variety of agricultural
areas (Allen et al., 2007b; Kjaersgaard et al., 2008).

In comparison with TIM and METRIC, the Two-Source Energy
Balance (TSEB) model contains a more detailed treatment of the
radiative and turbulent heat exchange between soil and vegetation
components and the soil–plant–atmosphere interface (Kustas and
Norman, 1999; Kustas et al., 2004; Li et al., 2005). The TSEB partitions
surface temperature and fluxes into soil and canopy components
based on the local cover fraction and surface roughness character-
istics. Because it does not require user intervention to subjectively
select hot and cold scene end members, in contrast with METRIC and
TIM, the TSEB algorithm can be fully automated has been integrated
into the regional Atmosphere Land Exchange Inverse (ALEXI) model
for routine monitoring of ET and drought at continental scales
(Anderson et al., 2007a,b).

Although these three models have different levels of complex-
ity, ancillary data requirements, and sensitivity to the required
inputs, each requires measurements of surface temperature,
vegetation cover, and standard meteorological data (primarily
wind speed, air temperature, vapor pressure and solar radiation).
Each has been promoted as having operational capabilities and
providing robust ET estimates, as supported by comparisons with
surface flux observations.

While such validation efforts using ground-based ET observa-
tions over a range of field conditions are important, very few
studies have attempted to intercompare energy balance model
output in order to quantify and gain greater insight as to the
possible uncertainty in ET estimation across a landscape com-
prised of a wide variety of vegetation cover and moisture
conditions (French et al., 2005; Timmermans et al., 2007).

French et al. (2005) conducted a comparison of surface energy
flux maps from the TSEB and SEBAL models using an Advance
Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
90 m resolution TR image over the Soil Moisture Atmosphere
Coupling Experiment (SMACEX) site, a corn and soybean produc-
tion region in Iowa. They pointed out that there were systematic
differences between models with generally better performance
from the TSEB model, while SEBAL presented difficulties in the
selection of the wet and dry pixels, as the scene was primarily
comprised of densely vegetated rain fed corn and soybean fields
and presented no obvious minimum and maximum surface
temperature endpoints.

Timmermans et al. (2007) conducted a similar type of
intercomparison analysis of fluxes over heterogeneous landscapes
during the SGP ‘97 and Monsoon ‘90 experiments, conducted in sub-
humid grassland/winter wheat and semiarid rangeland environ-
ments, respectively. They found large discrepancies between SEBAL
and TSEB flux maps over the study region, although both TSEB and
SEBAL fluxes showed similar agreement with the ground observa-
tions at discrete points within the modeling domains. The greatest
model discrepancies were found in areas with bare soil and sparse
vegetation, which they attributed to variability in the linear
relationship between surface temperature and surface-air tempera-
ture difference under heterogeneous land cover conditions.

This study compares flux estimates from the TIM, METRIC and
TSEB models using remotely sensed data and ground measure-
ments collected during SMACEX, to assess the utility and
tendencies of the different modeling strategies in mapping energy
fluxes. Model output is first compared with measurements from
dense network of flux towers, as is often performed in model
validation studies. In addition, the spatial consistency in model
estimates of the energy balance components is evaluated by
comparing mapped fluxes over the study region.

The SMACEX study area is a relatively simple landscape
dominated by soybean and corn production, but still exhibits
significant heterogeneity at the field scale in terms of fractional
vegetation cover and soil moisture conditions. By comparing
remote sensing-based energy balance models over an agricultural
landscape that is relatively well understood and characterized, a
greater understanding of the key factors directly related to model
parameterizations/formulations that are driving inter-model
discrepancies should emerge. The significance of the spatial
differences in heat flux estimation by the different models is
evaluated, and correlations of model discrepancies with specific
land surface conditions are identified.

2. Study region and data

2.1. Region description

The Walnut Creek watershed (100 km2) in Ames, IA was the main
site for intensive field campaign for SMACEX from June 15 to July 8,
2002 (Kustas et al., 2005). The SMACEX campaign, providing soil,
vegetation, remote sensing, and atmospheric data for investigating
soil–plant–atmosphere exchange, overlapped with the Soil Moist-
ure Experiment of 2002 (SMEX02), which focused on validation of
microwave brightness temperature and soil moisture retrieval
products. Full description of the region and the SMACEX campaign
can be found in Kustas et al. (2005). The watershed is mainly used for
row crop agriculture, with 95% of the land surface planted in corn
and soybean. During the field campaign, leaf area index (LAI) ranged
from �0 to �4 for soybean and �0 to �6 for corn (Anderson et al.,
2004). The climate is sub-humid with an annual average rainfall of
835 mm. There were minor rainfall events a few days prior to the
first Landsat overpass on June 23 (DOY 174), ranging from 0 to
�20 mm on June 20 (DOY 171), and then an extended dry down
period with no rainfall observed until several days after the second
Landsat overpass on July 1, DOY 182 (Kustas et al., 2005).

2.2. Ground data

Fourteen meteorological flux (METFLUX) towers were installed
within the watershed (Fig. 1). Turbulent fluxes were measured at
nominally 2 m above ground level in soybean fields and 4 m above
ground level in corn fields, with half hourly average fluxes of
sensible heat (H) and latent heat (LE), net radiation (RN), and soil
heat (G) reported. For a detailed discussion of the flux tower
observations and measurement uncertainty, see Kustas et al.
(2005), Prueger et al. (2005), and Meek et al. (2005). Ancillary
datasets such as TA, wind speed, and relative humidity were also



Fig. 1. (a) Surface temperature and NDVI maps for June 23 and July 01, 2002 (Note: white squares indicate flux tower locations, red circle indicates the location of the ID 702

weather station, and white-colored circles indicate the location of two anchor pixels used by METRIC. (b) Frequency histograms for TR and NDVI on June 23 and July 01. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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acquired. One long-term weather station (ID 702) provided
meteorological observations including TA, solar radiation, and
water vapor pressure on an hourly basis from April to August, 2002
(Fig. 1), as required by METRIC. Detailed descriptions of the flux
tower and weather station measurements can also be found at
http://nsidc.org/data/amsr_validation/soil_moisture/smex02/.

2.3. Remote sensing data

This study uses high-resolution thermal and visible/shortwave
information from two Landsat scenes: one collected with the
Landsat-5 Thematic Mapper (TM) on June 23, 2002, and a second
from the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) on
July 1, 2002. For consistency in the comparison among models and
between acquisitions, visible, near-infrared (NIR), and thermal-
infrared (TIR) bands were re-sampled to a common 60-m
resolution grid. Details concerning the Landsat imagery processing
are given in Li et al. (2004, 2005), including atmospheric correction,
re-sampling, and the determination of TR and the Normalized
Difference Vegetation Index (NDVI).

Maps of radiometric surface temperature and NDVI over the
study area for the June 23 and July 1 overpasses are shown in Fig. 1,

http://nsidc.org/data/amsr_validation/soil_moisture/smex02/


Fig. 2. Density plots for surface temperature and NDVI on June 23 and July 01, 2002

(Note: circles indicate hot (red) and cold (blue) endpoint pixels used in METRIC).

(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of the article.)
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along with associated frequency histograms. Both quantities
exhibit a bimodal distribution relating to land cover, reflecting the
different vegetation cover and moisture conditions that existed
for the soybean and corn crops during this time frame. Vegetation
cover fraction increased significantly between June 23 and July 1
due to rapid crop growth, as reflected in the increase in average
NDVI in Fig. 1. It might be expected that average surface
temperature would correspondingly decrease over this interval
due to enhanced cooling by plant transpiration, contrary to what
is observed in Fig. 1. However, surface temperatures on June 23
were likely depressed due to the rainfall event that occurred on
June 20.

Empirical relationships between Landsat-derived vegetation
indices and crop biophysical measurements made in the field were
used along with a detailed (crop-specific) land cover classification
to map LAI, vegetation cover fraction, and crop height over the
watershed (Anderson et al., 2004). These site-calibrated biophy-
sical fields were used as input to derive surface properties required
by the energy balance models. While such accurate information is
not generally available to operational modeling efforts, in this case
we used the best available surface information to more readily
isolate issues related to different model formulations from those
related to errors in the model input.

3. Energy balance models

In many TIR-based surface energy balance algorithms, surface
radiometric temperature is used to constrain the flux of sensible
heat from the land surface by relating TR to TO, the aerodynamic
surface temperature used in the sensible heat flux (H) equation:

H ¼ ðrCPÞTO � TA

rAH
(1)

where r is air density, CP is air specific heat, and rAH is the
aerodynamic resistance to heat transfer. Net radiation (RN) and soil
heat flux (G) are estimated from radiative transfer and canopy
interception considerations (e.g., Allen et al., 2007a), then latent
heat (LE) is computed as the residual of the surface energy balance
equation; namely LE = RN � G � H (Jiang and Islam, 2001; French
et al., 2005; Timmermans et al., 2007). As a result, LE accumulates
errors from the other flux components, which may be additive or
compensating.

For regional applications, flux-gradient models based on
Eq. (1), require that the temperature difference, TO � TA, be
accurately established for each model grid cell. The aerodynamic
surface temperature is related to TR, but the relationship depends
on vegetation cover amount, canopy structure, and sensor
viewing angle among other factors (Blyth and Dolman, 1995;
Lhomme et al., 2000; Su et al., 2001; Kustas et al., 2007).
Traditionally, the difference between TO and TR is mainly
attributed to the fact that heat diffuses through laminar boundary
layers surrounding canopy and soil elements, while momentum is
transferred more efficiently as a result of viscous shear and form
drag of the roughness elements involving local pressure gradients
(for further discussion, see Brutsaert, 1982). Another major
challenge lies in accurately specifying the required meteorolo-
gical boundary conditions in TA and accommodating inevitable
biases in TR due to inaccurate sensor calibration and atmospheric
and emissivity corrections (Anderson et al., 1997; Norman et al.,
1995). These difficulties have led to skepticism regarding the
practical utility of thermal data in surface energy balance
modeling (Hall et al., 1992; Cleugh et al., 2007). However, over
the past decade a variety of methods have been developed to
address these various modeling challenges for robust operational
application over large areas.
3.1. Trapezoid Interpolation Model (TIM)

To circumvent issues involved in specification of TO, rAH and TA

needed in the sensible heat flux equation (Eq. (1)), Jiang and Islam
(2001) proposed a simple technique to estimate LE directly, using
remote sensing observations of TR to interpolate values of a
coefficient u used in a modified Priestley–Taylor equation:

LE ¼ u ðRN � GÞ D

Dþ g

� �
(2)

where g is the psychrometric constant, and D is the slope of
saturation vapor pressure/temperature curve at air temperature TA

(Crago and Brutsaert, 1992). The u parameter combines the
Priestley–Taylor a term and the b variable from the Budyko–
Thornthwaite–Mather formulation (related to the conversion from
potential evapotranspiration to actual evapotranspiration by
moisture availability; Thornthwaite and Mather, 1955) to impli-
citly account for aerodynamic and canopy resistance. Values for u
are derived through interpolation between end member condi-
tions, umin and umax, defined from a scatterplot of TR vs. NDVI, which
tends to assume a trapezoid-like distribution. Fig. 2 shows scatter
plots in TR–NDVI space for the Landsat 5 and 7 images on June 23
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and July 1, 2002 collected over the Walnut Creek watershed, IA. The
boundaries of these distributions are used to define a ‘‘warm edge’’
indicating limiting amount of surface evaporation (umin is equal to
zero) due to either a dry bare soil surface or vegetation under
stressed conditions, and a ‘‘cold edge’’ indicating potential surface
evaporation and representing wet bare soil or vegetation with
ample water supply to meet atmospheric demand (umax is equal to
1.26) (Jiang and Islam, 2001). The warm and cold edges derived
from the Walnut Creek study area are shown in Fig. 2; similar
warm edge and cold edge equations were derived from the TR–
NDVI distribution over a larger �100 km � 100 km regional
domain. For each value of NDVI, a maximum and minimum
surface temperature (Tmax and Tmin) is defined by these edges. The
value of u at pixel i (ui) is determined by interpolating the pixel
temperature TR(i) between the two temperature limits associated
with the pixel’s NDVI using a procedure described by Batra et al.
(2006):

ui ¼ umax
Tmax � TRðiÞ
Tmax � Tmin

(3)

While the TIM is a simple modeling system that requires minimal
input data, several test applications over large heterogeneous areas
have produced reasonable flux estimates (Jiang and Islam, 2001).
However, the simple formulation neglects the effects of fractional
vegetation, land cover, and vegetation structure on the radio-
metric–aerodynamic surface temperature relationship affecting H

estimation (Kustas et al., 2007). Another likely limitation of the
TIM approach is the requirement that a given modeling scene
contains both umin = 0 and umax = 1.26, which may not be true for
many landscapes. Furthermore, the Priestley–Taylor formulation,
which represents potential ET when a = 1.26, does not consider
effects of significant local advection of energy over well-watered
areas.

3.2. Mapping EvapoTranspiration at high Resolution using

Internalized Calibration (METRIC) model

A modified version of the SEBAL scheme, METRIC, is fully
described in Allen et al. (2007a) and briefly summarized here. In
this model, potential errors in specifying dT = TO � TA in Eq. (1) are
addressed by assuming that dT scales linearly with surface
temperature such that

dT ¼ bþ aTR (4)

and

H ¼ ðrcPÞdT

rAH
(5)

where dT is the difference in air temperature between two heights
z1 � 0.1 m and z2 � 2 m above the canopy layer, and rAH is
aerodynamic resistance to heat transport between these levels
(s/m). The two coefficients (a and b) in Eq. (4) are derived
contextually from hydrologic and vegetation cover endpoints (hot
and cold pixels) contained within the scene, through examination
of plots of TR vs. NDVI (see Fig. 2). The hot pixel represents very dry
conditions with near-zero ET and ideally contains no vegetation
cover (low NDVI). At this pixel, LEhot � 0 so H � RN � G and dT can
be computed from Eq. (5) using an estimate of the available energy
at that pixel. The cold/wet pixel ideally represents a surface with
full, unstressed vegetation (high NDVI) evaporating at the
reference rate (LEcold � ETr) where ETr is a reference ET computed
from local meteorological observations. At this endpoint,
H � RN � G � LEcold and dT is again inverted from Eq. (5). The dT

and TR values at the cold and hot pixels are then used as endpoints
to establish the linear equation and coefficients in Eq. (4). At all
other pixels, dT is computed with Eq. (4) based on the pixel’s
surface temperature. Then H is computed through an iterative
process using Monin–Obukhov similarity theory to account for
stability effects on rAH, based on an extrapolated wind speed value
at top of the surface layer, at a blending height assumed by Allen
et al. (2007a) to be at z � 200 m. When H is determined, METRIC
computes LE as a residual from the energy balance equation.

To compute RN, a clear sky formulation of incoming solar
radiation from Allen et al. (2007a) is used along with an albedo
estimated from a weighted average of the satellite shortwave
bands. Here, downwelling longwave radiation has been estimated
using the Stefan–Boltzmann equation with Brutsaert’s atmo-
spheric emissivity (Brutsaert, 1975) expression, which has
provided reliable estimates over a variety of landscapes and
climates (Choi et al., 2008), instead of the regionally calibrated
equation determined for conditions in Idaho (Allen et al., 2007a).

In METRIC, the soil heat flux G is computed as a fraction of RN

with the coefficient a function of vegetation information, albedo,
aA, and TR:

G

RN
¼ ðTR � 273:15Þð0:0038þ 0:0074aAÞð1� 0:98 NDVI4Þ (6)

Eq. (6) has several coefficients that are likely to vary with land
cover type, but this expression was not calibrated with measure-
ments from this study.

In this application of METRIC, locally calibrated parameters
used for atmospheric correction of TR, including path radiance,
narrow band downward thermal radiation from a clear sky, and
narrow band transmissivity of air, were adapted for Iowa
conditions using MODTRAN 4.1 radiative transfer model (Li
et al., 2004). Local weather data required by METRIC, including
wind speed, air temperature, and water vapor pressure, were
extracted from the ID 702 weather station located in the center of
the watershed (Fig. 1). Reference evapotranspiration for alfalfa
(ETr) was estimated with the ASCE standardized Penman–
Monteith method (ASCE-EWRI, 2005) using local parameters from
the weather station site. For the cold pixel, a reference ET fraction
(ETrF) value of 1.05 was used to multiply ETr to estimate a more
reliable LEcold value since Allen et al. (2007a) determined that the
ET is typically 5% larger than the standard ETr value under wet soil
conditions with full vegetation canopy cover. For the hot pixel, the
ETrF coefficient is often assumed to be zero (LEhot = 0), but can be
greater than zero when there is residual evaporation from bare soil
caused by prior rain events or if there is transpiration from sparse
vegetation.

The internal calibration in METRIC using ground-based
reference ET has several advantages. It accommodates advective
conditions where ET may exceed RN � G as argued by Allen et al.
(2006, 2007a), and may provide for some adjustment to potential
biases in RN, G, roughness length, and TR. Allen et al. (2007a) argue
that assuming a diurnally constant ETrF provides an improved
extrapolation to daily total ET, in comparison with assuming a
constant evaporative fraction. However, the selection of the hot
and cold anchor pixels is subjective and the process is often not
easily defined or automated. Allen et al. (2007a,b) cautioned for the
need for user experience and expertise to produce high accuracy in
ET. Another issue is determining an appropriate LEhot value
associated with the hot pixel. In METRIC, the simple daily soil
water balance model described in the FAO56 publication (Allen
et al., 1998, 2005) is used to estimate ETrF at the hot pixel, with
values typically varying between 0 and 0.1. The water balance
model runs over some time interval prior to the modeling date
using observed precipitation and meteorological data from the
local weather station to estimate the residual moisture and ET at
the time of imaging. In the scenes studied here, a variation in the



M. Choi et al. / Agricultural and Forest Meteorology 149 (2009) 2082–2097 2087
ETrF for the hot pixel from 0 to 0.1 yields a change in the average LE

for a scene of �5%.
It should be noted that it was not possible to locate a completely

bare soil pixel for the hot pixel anchor in the sub-humid
agricultural area studied here; NDVI was about 0.2 and 0.22 for
the two hot pixels identified in Fig. 2. These pixels are in areas of
lower cover, which are likely to be late plantings of a soybean crop
As noted with the TIM implementation, the distribution of TR vs.
NDVI was similar over a larger �100 km � 100 km domain, thus
expanding the spatial domain did not alleviate this issue. The
presence of even sparse vegetation cover in rain fed areas is likely
to result in non-zero ET at the hot/dry pixel, potentially violating
the endpoint assumption of ETrF � 0.

3.3. Two-Source Energy Balance (TSEB) model

While TIM and METRIC are interpolation schemes, using TR as
a relative indicator of where a given pixel lies between wet and
dry hydrologic extremes, the TSEB model takes a more physical
approach to interpreting surface temperature in relation to the
surface energy balance. The basic formulation of the TSEB
scheme is described in Kustas and Norman (1999) and Li et al.
(2005). In contrast to one-source modeling, TSEB separates the
land surface into two components: the soil surface and
vegetation canopy. The TSEB partitions TIR observations at view
zenith angle w into soil and canopy contributions using the
equation

TRð’Þ � ½ f Cð’ÞT4
C þ ð1� f Cð’ÞÞT4

S �
1=4

(7)

where TC is canopy temperature, TS is soil temperature, and
fC(w) is fractional vegetation cover with w. Consequently, the
sensible heat flux H from soil and vegetated canopy can be
expressed as

H ¼ rCP
TC � TAC

rX
þ rCP

TS � TAC

rS
¼ rCP

TAC � TA

rA
(8)

where TAC is air temperature in canopy air space essentially
representing TO (see Kustas and Anderson, 2009), rA is aerodynamic
resistance to heat transfer between canopy and surface, rX is total
boundary layer resistance of complete canopy of leaves, and rS is
resistance of soil surface (Kustas and Norman, 1999). The surface
energy budget is balanced for both the soil and canopy components
of the land surface system:

RN ¼ RNS þ RNC ¼ H þ LEþ G (9)

RNS ¼ HS þ LES þ G (10)

RNC ¼ HC þ LEC (11)

where HS and HC are sensible heat fluxes partitioned between soil
and vegetated canopy, respectively, and RNS and RNC are the net
radiation at the soil surface and the divergence (i.e., sink) of net
radiation within the vegetation canopy layer. The latent heat flux
from the vegetated canopy (LEC) is derived from the Priestley–
Taylor equation with an initial Priestley–Taylor a value of 1.26
representing a potential transpiration rate. The latent heat flux
(LES) from soil surface is derived as a residual of energy balance
model with the surface soil heat flux (G) estimated by the fraction
of RNS (i.e., G � 0.3RNS). If LES is found to be negative (condensation
onto the soil, which is an unlikely condition under clear daytime
skies), this is interpreted as a signal that LEC has been over-
estimated and a is iteratively reduced, indicating some degree of
vegetation stress.

Ancillary inputs to the TSEB include insolation, meteorological
data (namely air temperature and wind speed), fractional
vegetation cover, and land cover class (to determine canopy
height and surface roughness). To approximate a general applica-
tion of the model, where local data might not necessarily be
available, domain-averaged meteorological forcing data used in
TSEB (TA and u) were generated by averaging observations over the
entire SMACEX flux tower network. The variation in TA and u

among the stations at the satellite overpass times were�0.5 8C and
�1 m/s, respectively. For comparison, the TSEB was also run using
data from the long-term weather station used in the METRIC water
balance model, approximating an application using local data. This
modified TSEB heat fluxes by less than 25 W/m2, a relatively minor
difference in comparison with the model-to-model differences
described below. In prior studies, the TSEB was also forced with
meteorological data collected at�40 m above ground level with no
measurable difference in model performance relative to using data
from the flux tower network (Kustas et al., 2004).

Unlike TIM and METRIC, which use the upper and lower limits
of TR and fractional vegetation cover within a scene to internally
calibrate key model variables, the TSEB scheme uses these
remotely sensed data as direct inputs (or in ‘‘absolute terms’’) in
the computation of the soil, canopy and aerodynamic surface
temperatures and heat flux components. As a result, the TSEB
scheme has greater sensitivity to uncertainty in TR values caused
by errors in atmospheric and emissivity corrections and to errors in
defining a spatially distributed air temperature field. However, it is
important to note that sensitivity to errors in TR and TA have been
greatly reduced by coupling TSEB into a time-differencing-atmo-
sphere boundary layer growth modeling scheme initially proposed
by Anderson et al. (1997) using geostationary satellite data. This
modeling scheme was applied and evaluated over the SMACEX
study area and its performance was similar to the local application
of TSEB (Anderson et al., 2005).

4. Comparison with flux observations

For comparison with observations from the tower network,
flux estimates from the three models were averaged over the
estimated upwind source-area/footprint (�100 m in dimension)
for each flux tower using the approach described by Li et al. (2008).
As observed in many studies, the sum of the turbulent flux
measurements of H and LE using the eddy covariance technique
tends to be less than the available energy, RN � G (Prueger et al.,
2005). Since the models assume energy balance closure
(H + LE = RN � G), the observed turbulent fluxes were modified
to achieve closure by both the Bowen ratio (BR) and residual (RE)
methods described by Twine et al. (2000). In brief, the BR method
preserves the Bowen ratio (H/LE) from the eddy covariance system
and partitions the remaining available energy based on this ratio
while the RE method assigns any remaining available energy to LE

only. The unclosed and closed flux estimates likely bracket the
true turbulent fluxes from the tower footprint, and give a measure
of observational uncertainty.

For both RN and G, the three models are in reasonable
agreement with the tower measurements, yielding root-mean-
square error values (RMSE) of 20–30 W/m2 and relatively small
biases of 20 W/m2 or less (Fig. 3 and Table 1). The turbulent flux
estimates of H and LE exhibit larger errors, with RMSE values up to
150 W/m2 for the TIM model (Fig. 3 and Table 1). Model
performance statistics depended on the choice of the closure
method applied to the tower measurements. Average RMSE values
for both closed and unclosed H and LE fluxes ranged between �30
and 90 W/m2 using TSEB and METRIC. In general, both models
performed similarly well in comparison with the tower observa-
tions, both yielding RMSE of 38 W/m2 for all flux components
combined, assuming the closure technique that optimized RMSE
for each model (RE for TSEB, and BR for METRIC). The TIM approach



Fig. 3. Comparison between modeled and measured fluxes at the Landsat overpass time on June 23 and July 01, 2002.

Table 1
Statistics comparing modeled output and flux measurements [W/m2] (Note: observed fluxes HBR and LEBR have been modified for energy balance closure using the Bowen

ratio (BR) method, while LERE was modified using the residual (RE) closure method).

Flux component Observed TIM TSEB METRIC

Average Average RMSE BIAS Average RMSE BIAS Average RMSE BIAS

RN 627 606 26 21 606 30 21 637 19 �10

G 88 74 24 14 110 32 �22 88 19 0

H 117 243 138 �126 111 31 6 179 80 �63

HBR 150 243 108 �93 111 62 39 179 57 �29

LE 314 289 65 25 385 90 �71 370 78 �55

LERE 422 289 146 133 385 60 37 370 75 53

LEBR 389 289 115 �93 385 53 4 370 55 19

All flux components combined 301 291 89 �17 299 51 2 313 55 �12

All fluxes (RE closure) 314 303 84 10 303 38 11 319 48 �5

All fluxes (BR closure) 314 303 68 �38 303 44 11 319 38 �5
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Fig. 4. Comparison between area-averaged modeled fluxes and measured fluxes from the tower network at the Landsat overpass time on June 23 and July 01, 2002.

Table 2
Difference statistics comparing flux output [W/m2] from three surface energy balance models, taken in pairs (TIM–TSEB, METRIC–TSEB, and METRIC–TIM).

Date 06/23 07/01

Models TIM–TSEB METRIC–TSEB METRIC–TIM TIM–TSEB METRIC–TSEB METRIC–TIM

RN Bias 6 47 41 �7 20 27

RMSE 18 53 42 16 30 31

G Bias �28 �29 �1 �20 �7 12

RMSE 39 34 24 31 19 20

H Bias 145 100 �45 97 72 �25

RMSE 149 114 71 106 100 64

LE Bias �110 �24 86 �82 �43 40

RMSE 114 52 94 89 74 62

M. Choi et al. / Agricultural and Forest Meteorology 149 (2009) 2082–2097 2089



Fig. 5. Sensible heat flux (H; W/m2) maps with frequency histograms from TIM (top), METRIC (middle) and TSEB (bottom) for June 23 (left) and July 01, 2002 (right). (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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had significantly greater difficulty in reproducing individual tower
fluxes, with average RMSE values exceeding 100 W/m2.

To ascertain how well the models were able to reproduce
surface fluxes at spatial scales larger than a single tower footprint,
area-averaged model output over the study domain was also
compared to average fluxes from the tower measurement network
(Fig. 4). The network-average fluxes have been shown to be
representative of the catchment scale fluxes based on comparison
with aircraft flux data and model output at 5–10 km resolutions
(Prueger et al., 2005; Anderson et al., 2005). The flux aircraft
Fig. 6. Latent heat flux (LE; W/m2) maps with frequency histograms from TIM (top), M

interpretation of the references to color in this figure legend, the reader is referred to
measurements of H and LE using the eddy covariance technique
gave similar closure values compared to the tower network. Hence,
flux divergence and other aircraft sampling issues, between the
surface and the measurement height (�40 m) were not considered
to be significant (Prueger et al., 2005). At this scale, both TIM and
METRIC tend to overestimate network average H by �115 and
80 W/m2, respectively, and underestimate LE by 145 and 80 W/m2

(Fig. 4). On the other hand, the TSEB technique reproduced the
observed area-averaged fluxes over SMACEX with greater accuracy
with differences for H < 10 W/m2 and LE < 50 W/m2 (Fig. 4). The
ETRIC (middle) and TSEB (bottom) for June 23 (left) and July 01, 2002 (right). (For

the web version of the article.)



Fig. 7. Density plots of inter-model differences in available energy (RN � G) vs. LAI on June 23 and July 1, 2002. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of the article.)
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close agreement between TSEB and tower-averaged fluxes was
also demonstrated by Kustas et al. (2004) and Anderson et al.
(2005).

5. Model intercomparison

Validation of model output with a handful of tower flux
measurements is often used to assess the utility of energy balance
models. However, this type of point-based comparison does not
guarantee the model provides reliable fluxes over the full range of
surface conditions that can exist across a landscape (Timmermans
et al., 2007). Therefore a spatial (pixel-by-pixel) intercomparison
of surface flux fields generated by the TIM, METRIC and TSEB
models was also conducted. Such a model intercomparison allows
for investigations of landscape properties and conditions that
cause significant discrepancies among the models and potentially
allows for a greater understanding of the factors causing such
discrepancies.
The largest differences among the models were in the turbulent
fluxes, H and LE, while discrepancies in RN and G tended to fall
within a typical range of model-measurement differences. More-
over, the magnitude of differences in RN and G for each model did
not show consistent patterns for the two overpass dates (Table 2).
Therefore we focus here on model differences in the turbulent
fluxes.

In Fig. 5, the spatial pattern of H generated by each model is
illustrated along with a histogram showing the frequency
distribution of values within the modeling domain. There are
noteworthy differences between the models, both in terms of
overall magnitude and spatial distribution/pattern—particularly
for the 23 June date where partial cover conditions were more
prevalent and some residual evaporation from prior rain events
was occurring. In general, the sensible heat flux maps from the TIM
and METRIC models were fairly similar, while comparisons with
TSEB yielded larger differences (Table 2). Both TIM and METRIC
predicted a decrease in average H from June 23 to July 1, while the
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domain average H from TSEB increased slightly. The time-behavior
in the area-averaged flux estimates from TSEB (i.e., increased
sensible heating) is well supported by the tower network
observations, regardless of closure technique (Fig. 4).

For both dates, TIM and METRIC produce similar histograms of
H, spanning a full range from 0 to 500 W/m2 (Fig. 5). In contrast, the
distribution in H from the TSEB peaks at smaller values and is
constrained over a narrower range, extending up to only 250–
300 W/m2. This difference in behavior is due to the fact that both
TIM and METRIC assume a full or nearly full range in hydrologic
conditions (i.e., H � 0 to H � RN � G) existed within the study area/
scene, forcing an interpolation of H values over this entire range. In
contrast, the TSEB scheme does not make any assumption about
hydrologic endpoints. French et al. (2005) found similar restriction
of the flux range using TSEB compared to SEBAL.

Latent heat flux distributions from all models show a bimodal
pattern (Fig. 6), reflecting the large difference in average LAI for
corn and soybean crops in the area. Histograms for LE (Fig. 6) are
more similar between models than those for H (Fig. 5).
Fig. 8. Density plots of inter-model differences in sensible heat (H) vs. LAI on June 23 and

reader is referred to the web version of the article.)
The scatter plots in Figs. 7–9 demonstrate the correlation of
inter-model flux differences with vegetation cover amount, as
defined by the leaf area index (LAI), revealing consistent patterns
for both imaging dates. For RN � G, the models differ most
significantly at LAI < 2, with a weaker trend at higher values of
LAI (Fig. 7). For the METRIC–TSEB comparisons, the larger
discrepancies in RN � G at lower LAI is due primarily to differences
in RN and more specifically to the model parameterization of
shortwave albedo. In METRIC, the shortwave albedo is computed
from a weighted average of the different visible and near-infrared
bands from the Landsat sensors. The TSEB scheme uses an
analytical formalism describing light interception by canopies
described by Campbell and Norman (1998) and Anderson et al.
(2000). This involves specification of leaf absorptivity and soil
reflectance in the visible and near-infrared wavebands, where the
bulk soil-canopy albedo is computed as a radiation-weighted
average of diffuse and direct beam reflectance factors that depend
on fractional vegetation cover. As a result, a narrower range in the
bulk shortwave albedo is estimated using the TSEB formulation,
July 1, 2002. (For interpretation of the references to color in this figure legend, the



Fig. 9. Density plots of inter-model differences in latent heat (LE) vs. LAI on June 23 and July 1, 2002. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of the article.)
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particularly for the low cover conditions where there is a tendency
for the METRIC soil albedo values to be lower than those specified
in TSEB.

A much stronger and consistent trend emerges when model
differences in H are plotted as a function of LAI, with discrepancies
decreasing as LAI increases (Fig. 8). This is particularly evident
between TSEB and METRIC, although there are slight trends for
TIM–TSEB and METRIC–TIM. There is a significant bias, particularly
for LAI < 2 with both TIM and METRIC model output having H

values often greater by >100 W/m2 compared to the TSEB model
values. Model difference plots for LE (Fig. 9) mirror the trends in H

(Fig. 8), but with somewhat smaller biases due to compensating
model disparities in RN � G (Fig. 7). Similar biases were detected by
French et al. (2005) in comparing SEBAL with TSEB output,
although with lesser compensatory effects of RN � G on LE (see
Fig. 5 in French et al., 2005).

To gain some insight into to what factor(s) are causing these
differences between model output fields, scatter plots comparing
fluxes from two of the models, METRIC and TSEB, are shown in
Fig. 10 for pixels containing the two main land cover types/crops
present in the scene: soybean and corn. The comparison is
illustrated for DOY 174 only, although the results are similar for
DOY 182. The generally higher H values computed by METRIC do
not result in significantly lower LE values when compared to TSEB
because of counterbalancing biases in RN and G, a behavior that is
part of the METRIC design. For both crops, the inter-model bias in H

is similar and quite linear, suggesting an adjustment to one of the
endpoint specifications in METRIC might significantly reduce the
inter-model bias.

While there appear to be pixels/areas that are representative of
reference ET conditions (Fig. 2), hence permitting a reliable
selection of the ‘‘cold pixel’’ for METRIC, the selection of ‘‘hot pixel’’,
where ET is close to zero or some small residual value as
determined from the daily water balance, was problematic in this
case. As noted above, the hot pixel should ideally be representative
of a dry, bare agricultural field, which was difficult to find in this
corn and soybean production region at this point in the growing
season, even when extending the study domain to encompass a



Fig. 10. Comparisons of flux estimates for H, LE, RN and G from TSEB and METRIC for two main land cover types, corn (left) and soybean (right), on June 23.

Fig. 11. Time series predictions of ETrF for bare soil generated by the water balance model used with METRIC for calibration of conditions at the hot/dry pixel endpoint. Also

shown are daily precipitation amounts measured at weather station ID 702 (blue bars). Red lines indicate the Landsat imaging dates. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of the article.)
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greater portion of the Landsat scene. Use of non-zero ETrF at the hot
pixel was therefore justified.

In Fig. 11, the time series of the ETrF variable computed from the
water balance model is displayed, exhibiting rapid response and
decay in ET based on the local precipitation and weather
conditions. While an ETrF value of �0.03 on the June 23 imaging
date was indicated by the water balance model, a value of 0.1 was
used in the simulation as recommended by Allen (personal
communication, 2008) based on recent experience in applying
METRIC to agricultural areas where a bare dry soil pixel in the
scene is not available (see also Tasumi et al., 2005). Comparisons
with the TSEB, however, indicate a larger value may have been
appropriate, to better match the area-averaged sensible heat flux
observed across the model domain with the tower network and
flux aircraft (Fig. 4).

The sensitivity of the METRIC estimates of H and LE for corn and
soybean pixels to different choices of ETrF at the hot pixel (referred
to as ETrFhot) is exhibited in Fig. 12, varying from 0 to 0.5 in
increments of 0.1. For sensible heat, the agreement between the
models decreases for both land cover types as ETrFhot increases,
with a slope close to unity for 0.4 < ETrFhot < 0.5 for corn and
ETrFhot = 0.5 for soybean. Changing ETrFhot, by this amount,
however, clearly increases the bias in LE between METRIC and
TSEB for both crops, because LE is computed as a residual to the
overall energy balance and therefore absorbs the systematic
changes in H. Given the differences in RN � G between METRIC and
TSEB, there is no value of ETrFhot that gives consistent estimates of
both LE and H between the models. For July 1 (not shown), the best
agreement in H between models occurs when ETrFhot � 0.2 for corn
and 0.4 for soybean. However, as for the June 23 date (Fig. 12), use
of higher ETrF values in METRIC for ETrFhot results in significant
deterioration in the agreement in LE between METRIC and TSEB.

When the TSEB-derived RN � G field is used in METRIC, an
ETrFhot of �0.4–0.5 and �0.2–0.4 for the June 23 and July 1,
respectively leads to reasonable agreement in both H and LE

between the two models. However, this suggests that for the hot
endpoint pixel, which had sparse vegetation (NDVI � 0.2), the
residual evaporation was 40–50% of the alfalfa reference values
computed using the Penman-Monteith equation. This does not
seem physically plausible. Clearly, ETrFhot > 0 is expected for this
region since NDVI values for the hot pixels (�0.2) on both overpass
dates indicate the presence of partial vegetation cover. Tasumi
et al. (2005) derived a relationship between ETrF and NDVI under
dry soil moisture conditions that suggests the value of ETrFhot



Fig. 12. Sensitivity of METRIC-derived H and LE to variations in ETrFhot from 0.1 to 0.5 in increments of 0.1 in comparison with TSEB fluxes for corn and soybean on June 23. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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should range from�0.10 to 0.15 for the NDVI values at the selected
hot pixel locations in the image. In summary, there does not appear
to be a physically justifiable value of ETrFhot that leads to
agreement between TSEB and METRIC fluxes, even accounting
for differences in available energy predicted by the two models.

This analysis illustrates the importance of identifying a true,
representative ‘hot pixel’ in the METRIC or SEBAL-type model and
the importance of assigning the proper non-zero ETrFhot value to
that pixel if it is not both completely dry and devoid of vegetation.
It also demonstrates that in residual methods for computing latent
heat (such as TSEB and METRIC), biases in H do not necessarily
translate to an equal and opposite bias in LE because of the
potential for a compensating bias in the available energy term (cf.
Fig. 10).

6. Summary and conclusions

An intercomparison of three remote sensing-based surface
energy flux models was conducted using Landsat 5 and 7 data
collected over a corn and soybean production region in central
Iowa during SMACEX. For RN and G, there was reasonable
agreement with the flux tower measurements resulting in RMSE
values of 20–30 W/m2 for the three models. However, H and LE

from the three models showed greater scatter and more significant
bias, with RMSE values from the TIM model reaching nearly
150 W/m2. When model output of H and LE was averaged over the
entire study domain and compared to average fluxes from the
tower network, TIM and METRIC flux estimates were significantly
biased, while TSEB better reproduced mean observed flux
conditions. This may be related to the fact that METRIC and TIM
force the predicted flux distributions to scale between wet and dry
hydrologic extremes, which may not necessarily be present in
every scene. TSEB does not make this assumption, and can
therefore be applied to scenes with limited moisture variability.
This forced scaling was also reflected in histograms of flux values
generated by TIM and METRIC, which showed broader distribu-
tions than did TSEB fluxes.

The magnitude of the discrepancies among the models was
identified to be strongly related to the fractional vegetation cover/
LAI. In most cases, the largest differences, particularly in H, were
observed over partially vegetated areas having LAI < 2. Model
differences in available energy, RN � G, tended to modulate the
discrepancies in LE. Focusing on METRIC and TSEB, both of which
showed reasonable agreement with tower fluxes, inter-model
biases in H were found to be significant and strongly linear. An
adjustment to the ETrF value in METRIC for the ‘hot pixel condition’
from �0.1 estimated from the water balance model to 0.4–0.5
largely eliminated the bias in H, but served to increase the bias in
LE due to model differences in available energy. These results
suggest that application of METRIC in an agricultural area with
high vegetation cover, containing no areas of completely bare soil
at the thermal pixel scale, requires special attention to the
specification of ETrF at the hot pixel location, including adjustment
of minimum ET based on the vegetation amount in addition to
residual evaporation from soil.

The model intercomparison presented here suggests that
significant discrepancies in flux mapping exist among these
proposed operational approaches. This was even the case for
METRIC and TSEB modeling schemes, although comparisons with
individual tower-based flux observations yielded satisfactory
results. This SMACEX site was selected for this preliminary
intercomparison because of the relative simplicity of the land
surface and because important surface characteristics (e.g., land
cover type, crop height, LAI) have been well-characterized using
ground and satellite observations. As such this helped to isolate the
key factors that affect model agreement.
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While it is beyond the scope of the current study to reconcile
these model discrepancies, further TSEB–METRIC intercompar-
isons are planned over more complex and heterogeneous land-
scapes, including areas with low vegetation cover where the
models tend to have the largest discrepancies in heat flux
estimation. Efforts to improve consistency in available energy
retrieval across model implementations will enhance intercom-
parability of turbulent flux estimates. If this can be achieved, these
intercomparison studies should ultimately lead to improvements
in the algorithms used by the various models and perhaps lead to
the development of a hybrid remote sensing-based energy
balance/ET model with significantly greater utility and portability.
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